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Stress distribution in a segmented coating film 
on metal fibre under tensile loading 

S H O J I R O  O C H I A I ,  KOZO O S A M U R A  
Department of Metallurgy, Kyoto University, Kyoto 606, Japan 

When a coating film on a metal fibre or wire is brittle, it exhibits multiple-fracture under 
loading. In order to describe the exerted tensile stress on the segments of a coating film as a 
function of the distance from the end of the segments and as a function of applied stress, a 
new approximate calculation method is presented, assuming that the interfacial bonding 
strength is high enough and no interfacial debonding occurs. Using the present calculation 
method, effects of geometrical factors such as fibre diameter, thickness of coating film and 
length of segment as well as those of mechanical factors such as Young's modulus, shear 
modulus and the yield stress of the fibre and the coating film on the exerted tensile stress on 
the segments and also on the exerted shear stress at the interface are described in a 
quantitative manner. 

1. Introduction 
Currently, in wide fields in technology, coating treat- 
ment on metals is carried out in order to strengthen 
the surface of metals or to protect them from cor- 
rosion. The materials for coating are, in general, 
harder than the base metals and the strain to failure is 
lower than the metals. Thus, in many cases, the coat- 
ing film on metals fails in early stages of deformation 
under tensile loading, forming a notch on the metal 
surface. If base metals have low ductility, the notch 
formed can extend into the metal, resulting in a loss in 
strength of metals [1-3]. On the other hand, if base 
metals have a high enough ductility to prevent the 
formed notch from extending into metals, the coating 
film exhibits multiple-fracture as long as the drop in 
load due to fracture of coating film can be compen- 
sated for by work-hardening of the metals. The multiple 
fracture phenomenon of coating film on metals under 
tensile loading have been observed in aluminium- 
alumina [4, 5], niobium-superconducting Nb3 Sn [6, 7] 
and molybdenum-TiC [8, 9] combinations where the 
former are metals and the latter are coating materials. 
It is very important to describe the multiple-fracture 
phenomenon in these practically useful materials. 

In order to describe the multiple-fracture phenom- 
enon of coating film in a quantitative manner, we 
should know exerted stress in a segmented coating 
layer. Considering the case where a metal fibre 
deforms plastically in she0r in the whole range of the 
length of segments, the exerted tensile stress on seg- 
ments, ~2, could be inferred by modifying the Kelly- 
Tyson model [10], by 

~r27c[(d + 2c) 2 - d2]/4 = ndzx  (1) 

where d is the diameter of the fibre, c the thickness of 
the coating film and x the distance from the end of 
segments, and z is the interfacial shear stress, which 

can be given by the shear yield stress of the metal if the 
metal shows no strain hardening. However, practical 
metals and alloys show more or less strain hardening, 
which makes it difficult to estimate the value of z 
in Equation 1. Furthermore, the multiple-fracture 
phenomenon of the coating film occurs even at low 
stress levels where the fibre deforms elastically in shear 
along the length of the segments and also where the 
fibre deforms plastically in shear in some range of the 
length of segments but it deforms elastically in other 
range of the length. In order to know the tensile stress 
distribution and shear stress distribution at interface 
in the whole range of applied stress, a new approach 
is requested. 

The aim of the present paper is to present a new 
approach for the case where interfacial bonding is 
strong enough to supress debonding at the interface. 
In a subsequent paper [11], using the present 
approach, a computer simulation is carried out and 
the multiple-fracture behaviour of the coating film is 
described in a quantitative manner. 

2. Calculation method 
In the present approach, the following approximation 
are made: (i) the fibre shows linear strain hardening 
after tensile and shear yielding; (ii) tensile and shear 
behaviour of the fibre are independent of each other; 
namely tensile (shear) behaviour is not affected by 
shear (tensile) behaviour; (iii) the radial and hoop 
stresses are neglected and only the tensile and shear 
stresses in the tensile direction are considered. 

2.1. Simplification of the stress-strain curve 
of the fibre 

In the present calculation, the tensile stress al-strain 
e curve of the fibre was approximated as shown in Fig. 
la. In the stage of elastic deformation (5 < ey where ey 
is the yield strain in tension), al is given by using the 
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Figure 1 Simplified (a) tensile stress a l -s t ra in  e and (b) shear stress 
z~ strain 7 curves of the fibre. 

Young's modulus Ej as 

oq = El ~ (2) 

and in the stage of plastic deformation (~ > ey), it is 
given by 

al = (1 - co)O'ly + coEle (3) 

where aly is the tensile yield stress given by E~ ey and co 
is the slope of the stress-strain curve in plastic defor- 
mation, normalized with respect to El. "co = 0", 
"0 < co < 1" and "co = 1" mean that the fibre 
exhibits no strain hardening after yielding, it deforms 
with the strain hardening coefficient coEl and it 
deforms elastically, respectively. 

Similarly, as shown in Fig. l b, the shear stress 
q - s he a r  strain 7 curve was approximated as 

l: I = G17 (4) 

for ~, < ~y w h e r e  ])y iS the shear yield strain and G1 is 

2 

:--'.  

(a) (b) 

Figure 2 (a) Model composite cylinder and (b) appearance of the 
composite after mutliple-fracture of  the coating film. The hatched 
region shows the cross-section of fractured coating film. 1 and 2 
refer to fibre and coating film, respectively. 

X =  l l 2 ~  

(a) 
ILM 

(t) 

Figure 3 Deformation stages of the element with length l. r l ,  I1~, [ ]  
and [ ]  refer to regions A, B, C and D, respectively. 

the shear modulus, and 

171 = (1 - -  fl)Tly -[- GI~ (5) 

for 7 > 7y where qy is the shear yield stress of the fibre 
and fl is the slope of the shear stress-strain curve in 
plastic deformation, normalized with respect to G1. 

2.2. Model composite 
Fig. 2a shows the two-component composite cylinder 
of an inner core of fibre (shown by 1) and outer case 
of coated layer (2). The diameter of the fibre and the 
thickness of the coating film are given by d and c, 
respectively. In the following parts, the subscripts 1 
and 2 refer to the fibre and coating film, respectively. 

With increasing applied load, the coating film 
shows multiple fracture as schematically shown in Fig. 
2b. In the present calculation, the element with length 
l is taken and stress distribution will be calculated for 
this element. 

2.3. Deformation stages 
When the applied load is low, the fibre deforms elasti- 
cally both in tension and shear (Fig. 3a). With increas- 
ing stress, the fibre becomes plastic in (b) tension or (c) 
in shear. With further increasing load, the range of 
plastic deformation of the fibre in tension, (b) 
0 =< x _< a, and (c) in shear 0 __< x __< b increases, 
where x is the distance from the end of the element. 
For the (b) stage, there are two possible stages after 
further loading. If  the fibre does not yield in shear, (d) 
"a"  reaches l/2, but if (e) the fibre yields in shear 
before "a"  reaches l/2, the fibre shows yielding in 
shear. For stage (c), there is only one possible stage 
after further loading; namely the region of  shear 
plastic deformation of the fibre grows and the region 
of tensile plastic deformation appears (f). (As the 
stress distribution is symmetrical with the centre 
x = l/2, the shear stress between 1 and 2 at x = l/2 is 
always zero. Therefore the range of shear plastic 
deformation cannot grow beyond x = l/2. This is the 
reason why there are no stages other than (f) after 
stage (c).) After the appearance of stage (f), the region 
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T A B L E I Regions contained in the deformation stages (a) to 
(g) shown in Fig. 3. The A to D refer to the regions A to D, 
respectively 

Stage in Regions and their ranges 
Fig. 3 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

A(0 < x < l /2)  
B(0 < x < a) a n d A ( a  < x < 1/2) 

C(0 < x -< b )and  A(b < x < l/2) 

B(o < x -5 l/2) 
D(0 =< x - c) ,B(c < x < a) a n d A ( a  <= x < l/2) 

D(0 =< x =< c) ,C(c =< x < b) a n d A ( b  < x <= l/2) 

D(0 =< x =< c) andB(c  <= x <= l/2) 

of tensile deformation grows and stage (e) appears. 
After further loading for stages (d) and (e), stage (g) 
will appear where the fibre shows tensile plastic defor- 
mation in the whole length l, and shear plastic 
deformation for 0 < x < c but shear elastic 
deformation for c < x < l/2. 

Noting the region where the fibre deforms elas- 
tically both in tension and shear as region A, the 
region where fibre deforms plastically in tension but 
elastically in shear as region B, the region where the 
fibre deforms plastically in shear but elastically in 
tension as region C and the region where the fibre 
deforms plastically both in tension and shear as region 
D, the aforementioned deformation stages shown in 
Fig. 3 consists of one, two or three regions of these 
regions, as shown in Table I. 

2.4. E q u a t i o n s  o f  stress e q u i l i b r i u m  
In order to calculate the stress distribution in stages 
(a) to (g), we should first formulate the stress equilib- 
rium in regions A to D. In the present work, to obtain 
equations of stress equilibrium, we modify the Dow's 
model [12], which was originally proposed to estimate 
the stress transfer from the matrix to discontinuous 
fibres in elastic fibre-elastic matrix composites. 

2.4. 1. Region A where the fibre deforms 
elastically both in tension and shear. 

Defining ~ and ~2 as the distance of the centroid of the 
fibre from the interface and as that of coating film 
from the interface, respectively, ~ and rE are given by 

~1 = d/2 -- (2)~/2d/4 (6) 

~ = {[ (d + 2c)  ~ + d : ] / 8 }  '/2 - d / 2  (7)  

Equations for shear stress at interface, z~, are given 
by 

"~i = - -  G l ( f i  - -  U1)/r l  (8) 

z~ = - G ~ ( U ~  - U i ) /?2  ( 9 )  

where U~, U2 and Ui are displacements of the fibre at 
the centroid, that of coating film at the centroid and 
that of the interface in the x direction. Combining 
Equations 8 and 9, we have 

~ = - H ( U 2  - U , )  0 0 )  

H = [(G~G2/?I?2)]/[(G~/?~) + (G2/72)] ( l l )  

As the load in the fibre and that in the coating film 

vary through interface we have 

.41El(d 2 U ~ / d x  2) = xdz i -- 

A2E2(d: UA/dx  z) = - 7~dzi 

- -- 7zdH(U# - U#) 

(12) 

= n d H ( U # -  U#)  

(13) 

where ii~ and ii2 are cross-sectional areas of the fibre 
and the coating film, respectively. Solving Equations 
12 and 13, we have 

U A = - ( # A , / k  2) exp ( -  kx)  - (#A2/k  2) exp (kx)  

+ A3x  + A4 (14) 

U A = ( A , / k 2 ) e x p ( - k x )  + (A2 /k2 )exp (kx )  

+ A 3 X  + A 4 (15) 

where A1 to A 4 a r e  integral constants, # is given by 

# = A2E2/d lEI  (16) 
and k is given by 

k = {[TrdH(1 + #)11(,42E2)} '/2 (17) 

2 .4 .2 .  R e g i o n  B w h e r e  t h e  f ibre  d e f o r m s  
p l a s t i c a l l y  in t e n s i o n  b u t  e l a s t i c a l l y  in 
shear 

The shear stress at the interface is given by Equations 
10 and 11, similarly to region A. Using Equation 3, the 
equations for stress equilibrium are given by 

og.4~E,(d2U?/dx 2) = - ~ d H ( V ~  - UI B) (18) 

.42Ea(d 2 U#/dx  2) = ndH(U2 n - UI B) (19) 

Solving Equations 18 and 19, we have 

(JIB = - (#B l/r 2) exp ( -  rx) 

- (#B2/fnr2)exp(rx)  + B3x + B4 (20) 

U# = (B,/r2)exp( - rx) 

+ (B2/r2)exp(rx)  + B3x + B 4 (21) 

where Bl to B4 are integral constants and r is given by 

r = {[ndH(1 + 09/#)]/(A2E2)} ~/2 (22) 

2.4.3. Region C where the fibre deforms 
elastically in tension but plastically in 
shear 

In this region, as the fibre is plastic in shear, using 
Equation 5, we have the interfacial shear stress as 

*i = - [(1 - fl)T,y + flGl(Ui - U,)/~,] (23) 

ri = - G 2 ( U 2 -  Ui)/P2 (24) 

Combining Equations 23 and 24, we have 

T i = T'ly - -  J ( U  2 - -  U1) (25)  

Ttly = [ - -  ( a 2 / r 2 ) ( l  - -  fl)"Cly]/[(flal/rl) -q- ( a 2 / r 2 )  ] 
(26) 

J = [(flG, Gz/?,?R)]/[(flG~/~I) + (G2/T2)] (27) 

The equations for stress equilibrium are given by 

d~E, (d2UC/dx  2) = 7td['c;y - J ( U  c - UlC)] (28)  

.42ER(dZU2C/dx 2) = - -  7~d['t'ly - -  J ( U  C - -  Uff)] (29)  
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So lv ing  E q u a t i o n s  28 a n d  29, we have  

U1 C - -  ( ~ C  1 / t  2) exp ( -  t x )  - ( t ~ C 2 / f l )  exp ( t x )  

+ C3x "Jr- C 4 (30)  

U c = ( G / t 2 ) e x p ( - t x )  + ( C 2 / f l ) e x p ( t x )  

-}- C3x -}- C 4 Jr- T;y/J (31)  

where  G to C4 are  in t eg ra l  c o n s t a n t s  a n d  t is g iven  by  

t = {[~d(l  + # ) J ] / ( , , ~ 2 E 2 ) }  1/2 (32) 

2.4.4. Region D where the fibre deforms 
plastically both in tension and shear 

The  in t e r f ac i a l  s t ress  is g iven  by  E q u a t i o n s  25 to  27. 
T h e  e q u a t i o n s  fo r  s t ress  e q u i l i b r i u m  are  g iven  by  

(Dz~ I.E l(d2UID/dx 2) = ~d[r;y - J(U ff - uC)]  (33) 

A2E2(d2UD/dx 2) = - /rd[z~y - -  J ( U  c - uC)] 

(34) 

So lv ing  E q u a t i o n s  33 a n d  34, we have  

Ui D - -  ( # D 1 / c o s  2)  exp  ( -  s x )  

- ( # D 2 / c o s 2 ) e x p ( s x )  + D 3 x  + 194 (35) 

U2 D = ( D , / s  2 )  exp  ( - -  s x )  + ( D 2 / s  2) exp  ( s x )  

+ D 3 x  + 0 4  q- Z;y/J (36) 

whe re  D~ t o / ) 4  a re  i n t eg ra l  c o n s t a n t s  a n d  s is g iven  b y  

s = {[~dJ(1 + # / ~ o ) ] / ( f t 2 E 2 ) }  l/2 (37) 

2.5. B o u n d a r y  c o n d i t i o n s  
A s  s t a t ed  in sec t ion  2.3., t he re  a re  m a n y  d e f o r m a t i o n  
s tages .  In  each  s tage,  there  a re  one  to  th ree  r eg ions  as 
s h o w n  in T a b l e  I. T h e  p r inc ip l e  b o u n d a r y  c o n d i t i o n s  
in each  d e f o r m a t i o n  s tage  are  g iven  as fo l lows .  

(a) A t  x = 0, the  d i s p l a c e m e n t  o f  the  f ibre  is ze ro ,  

a n d  the s t ress  o f  the  c o a t i n g  fi lm is ze ro  s ince it is 

f r a c t u r e d  a t  x = 0 in the  de f in i t ion .  
(b) A t  x = x ( i nc lud ing  a, b a n d  c), the  d i sp l ace -  

m e n t  a n d  tens i le  s t r a in  in f ibre  a n d  c o a t i n g  fi lm a re  

c o n t i n u o u s .  
(c) A t  x = a a n d  b, the  f ibre  shows  y i e ld ing  in 

t ens ion  a n d  in shear ,  r espec t ive ly .  T h e r e f o r e  a t  x = a 
a n d  b, E q u a t i o n s  38 a n d  39 are  sat isf ied,  respec t ive ly .  

El(dUt(a)/dx ) = ff,y (38) 

H[U2(b) -  G(b) ]  = "C,y (39) 

A t  x = c, the  f ibre  shows  y i e ld ing  b o t h  in t en s ion  
a n d  in shear .  T h e r e  a re  th ree  p o s s i b l e  cases  fo r  r eg ion  
D to ar ise;  (e), (f)  a n d  (g) in F ig .  3. In  the  cases  o f  (e) 
a n d  (g), as the  f ibre  is y i e lded  in t en s ion  b e y o n d  
x = c, the  c o n d i t i o n  a t  x = c gives 

H[U2(c ) -- Ul(C)] = 271y (40) 

O n  the o t h e r  h a n d ,  in the  case  o f  (f),  as the  f ibre  is 
y i e lded  in s h e a r  b e y o n d  x = c, the  c o n d i t i o n  a t  x = c 
gives 

E , ( d G ( c ) / d x )  = a,y (41) 

(d)  A s  the d e f o r m a t i o n  b e h a v i o u r  o f  the  e l emen t  is 
s y m m e t r i c  wi th  the  cen t r e  a t  x = //2, the  d i sp lace -  
m e n t  o f  the  f ibre  a n d  the  c o a t i n g  fi lm a re  e q u a l  to  each  

o t h e r  a t  x = l / 2 .  

(e) A t  a n y  c ross - sec t ion ,  the  l o a d  is c o n s t a n t ,  be ing  
equa l  to  ao(d~ + ~z~2) where  ar is the  tens i le  s t ress  o f  

c o m p o s i t e  b a s e d  on  the t o t a l  c ro s s - s ec t i ona l  a rea .  

U s i n g  a b o v e  p r inc ip le ,  the  b o u n d a r y  c o n d i t i o n s  in 
each  d e f o r m a t i o n  s tage  a re  g iven  as s h o w n  in T a b l e  II .  

In  the  f o l l o w i n g  c a l c u l a t i o n ,  the  r e l a t i o n  o f  fl to  ~o 
was  g iven  to  a first  a p p r o x i m a t i o n  as fo l lows .  A s  the  
r e l a t i o n  o f  a~ to  q a n d  t h a t  o f  e to  7 in the  p las t i c  s ta te  
a re  gene ra l l y  g iven  by  

a l  = M z l  (42) 

TA B L E I I Boundary conditions in deformation stages (a) to (g) shown in Fig. 3 

Stage in Boundary conditions 
Fig. 3 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

uA(0) = 0 . . .  (1), d U A ( O ) / d x  = 0 . . .  (2), U # ( l / 2 )  = U # ( l / 2 ) . . ,  (3), d , E ~ l d U # ( x ) / d x ]  + A 2 E 2 [ d U 2 a ( x ) / d x ]  

= ac(A 1 + A 2 ) . . . ( 4 )  

U~(0) = 0 . . .  (1), d U ~ ( O ) / d x  = 0 . . .  (2), U~(a) = U ~ ( a )  . . .  (3), UB(a)  = Ur . . .  (4), dU~B(a) /dx  = d U ~ ( a ) / d x . . .  (5), 
dU2B(a) /dx  = dU2A(a) /dx  . . . (6), E , [ d U t A ( a ) / d x }  = a~y. . .  (7), U ~ ( l / 2 )  = U2A(l/2) . . . (8), d , E ,  { d U ~ ( x ) / d x }  

+ d 2 E 2 { d U ~ ( x ) / d x  } = a e ( d  , + d 2 ) . . .  (9) 

uc(0) = 0 . . .  (1), d U c ( O ) / d x  = 0 . . .  (2), U C ( b )  = U ~ ( b )  . . . (3), UC(b)  = U ~ ( b )  . . .  (4), d U C ( b ) / d x  = d U ~ ( b ) / d x .  

(5), d U C ( b ) / d x  = dU2A(b ) /dx  . . . (6) H [ U ~ ( b )  - U~(c)] = r~y . . .  (7), U ~ ( l / 2 )  = U ~ ( l / 2 )  . . .  (8), d , E , [ d U ~ ( x ) / d x ]  

+ d 2 E z [ d U f ' ( x ) / d x ]  = ac(d~ + d2) . .  (9) 

UB(0) = 0 . . .  (I), dU~2 (0)/dx = 0 . .  (2), U~B(I/2) = U~( l / 2 )  . .  (3), d~{(l - r + cnE~[dUj~(x ) /dx l }  

+ d 2 E 2 [ d U ~ ( x ) / d x  ] = G ( X j  + d 2 )  . .  (4) 

U~(0) = 0 . . .  (1), d U ~ ( O ) / d x  = 0 . .  (2), U ~ ( c )  = UtB(c) . .  (3), U ~ ( c )  = U2B(c) . . .  (4), d U D ( c ) / d x  = d U ~ ( c ) / d x  . 

(5), dU2D(c) /dx  = dU2B(c) /dx  . . . (6), H [ U ~ ( c )  - U~(c)] = Z ,y . . .  (7), U ~ ( a )  = U ~ ( a )  . . . (8), U2B(a) = U2A(a) . . . (9), 
d U i B ( a ) / d x  = d U A ( a ) / d x  . . . (10), d U ~ ( a ) / d x  = d U ~ ( a ) / d x  . . .  (1l), E , [ d U ~ ( a ) / d x ]  = a l y . . .  (12), U ~ ( l / 2 )  = U2A(l/2) . .  

(13), d , E , [ d U ~ ( x ) / d x ]  + d z E 2 [ d U ~ ( x ) / d x  ] = G ( A ,  + ~q2) . . . (14) 

UP(0) = 0 . . .  (1), d U ~ ( O ) / d x  = 0 . . .  (2), U ~ ( c )  = UC(c)  . . .  (3), U2D(C) = UC(c )  . . .  (4), d U D ( c ) / d x  = d U C ( c ) / d x  . . 

(5),dUD(c)/dx = d U C ( c ) / d x  . . . (6),  E , [ d U C ( c ) / d x l  = a~y. . . (7) ,  U C ( b )  = U ~ ( b )  . . . (8),  U f f (b )  = U ~ ( b )  . . . (9),  

d U C ( b ) / d x  = d U ~ ( b ) / d x  . . . (10), d U C ( b ) / d x  = d U ~ ( b ) / d x  . . . (ll) ,  H [ u z A ( b )  - -  Uta(c)] = z ,y . . .  (12), UIA(I/2) 

= U ~ ( l / 2 )  . . .  (13), d ~ E , [ d U ~ ( x ) / d x ]  + A 2 E z [ d U 2 A ( x ) / d x ]  = G ( 3 x  + ,72) . . .  (14) 

UP(0) = 0 . . . (1 ) ,dUD(0) /dx  = 0 . . . ( 2 ) ,  UP(C)  = u~B(c) . . . (3), U ~ ( c )  = U~(c )  . . . (4),  d U i D ( c ) / d x  = d U ~ ( c ) / d x  . . . 

(5), d U D ( c ) / d x  = d U ~ ( c ) / d x . . .  (6), H[U2B(c) - -  U~(c)] = " C l y . . .  (7), uiB(l/2) = U 2 B ( I / 2 ) . . .  (8).'/,{(1 -- co)a,y + 
~ E t [ d U ,  B(x ) /dx]}  + A2E2[dU2B(x ) /dx]  = G ( , ~ ,  + 2 2 ) . . .  (9) 
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e = My (43) 

where M is a constant .  When  the mater ia l  1 is com-  
posed o f  a single crystal,  M is given by the Schmidt  
factor,  and when it is composed  of  a polycrystal ,  M is 
normal ly  given by 2 or  the Tay lo r  factor  (3.06 for  f c  c 
and 2.75 for  b c c  metals).  F r o m  Equat ions  3 and 5, we 
have 

d a l / d e  = toE  (44) 

d'q/d7 = fiG, (45) 

Combin ing  Equat ions  42 to 45, we have 

= ~oE, / (M=G,)  (46) 

In  the present  calculations,  the value of  M = 2 was 
used since the meta l  fibre is generally composed  o f  a 
polycrystal .  Even if the Tay lo r  factor  were used, the 
results o f  the present  calculation would not  be changed 
essentially. 

3. Resu l ts  o f  t h e  c a l c u l a t i o n s  
3.1. Tensile stress distribution in the 

segmented coating film and shear stress 
distribution at the interface as a function 
of the distance from the end of t he  
s e g m e n t s  

The  tensile stress distr ibution in the segmented coat-  
ing film a2 and the shear  stress distr ibution at  the 
interface T i as a funct ion o f  x for  given lengths of  
/ = 50 (a ,a ' ) ,  100 (b ,b ' )  and  2 0 0 # m  (c,c ')  o f  segments  
were calculated as examples  as shown in Figs 4 and 5 
where the values o f  E~ = 100GPa ,  E 2 = 300GPa ,  
G~ = 4 0 G P a ,  G2 = 120GPa,  d = 300#m,  r = 0.005, 
fl = 0.00313, aly = 3 0 0 M P a ,  zly = 150MPa,  and 
c = 3 # m  (a to c) and  10#m (a '  to c ' )  were sub- 
stituted. In  these examples,  the curves 1 to 3 corre- 
spond  to a~ = 200, 360 and  420 MPa ,  respectively. 1~ i 
[s taken as positive for  the - x  direction for  con- 
venience. "a~ = 200 M P a "  cor responds  to stage (a) in 
Fig. 3 and "a~ = 360 M P a "  and  "a~ = 4 2 0 M P a "  
cor respond  to stage (g) in Fig. 3. The  tensile stress o f  
the segments,  az,  increases with increasing compos i te  

i 
(a) (b) 

3 | 

c 
2 (ca'). (b')- 

0.. 

i i i 
(c) 

(c') 

o 50,0 50 ,oo,o so ~oo ,so 200 
x (pro) 

Figure 4 Tensile stress distribution in segments as a function ofx for 
(a,a') l = 50, (b,b') 100 and (c,c') 200#m at a c = ((~)) 260, ((~)) 
360 and ((~)) 420 MPa. (a) to (c) show the distributions for c = 
3/~m and (a') to (c') for c = 10 #m. E l = 100 GPa, E 2 = 300 GPa, 
G~ = 40GPa, G 2 = 120GPa, d = 300/~m, co = 0.005, fl = 
0.00313, ajy = 300MPa and zly = 150MPa. 
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Figure 5 Shear  stress d i s t r ibu t ion  a t  the interface as a funct ion  of  x 

for (a ,a ' )  l = 50, (b ,b ' )  100 and  (c,c ')  2 0 0 # m  at  a:  = ((~)) 260, 

( 0 )  360 and  ((~)) 420 MPa .  (a) to (c) show the d i s t r ibu t ions  for c = 

3 p m a n d ( a ' ) t o ( c ' ) f o r c  = 10pm.  E l = 100GPa ,  E 2 = 3 0 0 G P a ,  

G I = 4 0 G P a ,  G 2 = 120GPa ,  d = 300/am, r = 0.005, fl = 
0.00313, ajy = 3 0 0 M P a  and  zly = 150MPa .  

stress ac at  any x except x = 0 for  any  values of  I and  
c. C o m p a r i n g  the curves in (a) to (c) with those in (a ' )  
to (c ' )  in Fig. 4, respectively, it is found t h a t  the az - x 
curves for  smaller  c are higher than  those for  larger c. 
This  implies tha t  the thinner the coat ing film, the 
higher becomes  the exerted tensile stress on the coat-  
ing film. F r o m  the compar i son  o f  the curves in (a ,a ' )  
with those in (b ,b ' )  and those in (c,c ')  in Fig. 4, it is 
known  tha t  high tensile stress is exerted on the seg- 
ments  when the length o f  the segments  is long. The  
m a x i m u m  stress o f  the segments,  which is found  at 
x = l/2, a2,max in Fig. 4, decreases with decreasing l. 
This  means  that  the long segments  can be b roken  into 
shorter  segments,  since the longer the segments,  the 
higher becomes  the exerted tensile stress, and  
therefore the probabi l i ty  where the exerted stress is 
higher than  the ul t imate tensile s t rength o f  the seg- 
ments  becomes  high. 

The  shear stress distr ibution at  the interface vi cal- 
culated using the same condi t ions as those in Fig. 4 is 
shown in Fig. 5 where (a) to (c) cor respond  to (a) to 
(c) in Fig. 4 and also (a ' )  to (c ' )  cor respond  to (a ' )  to 
(c ')  in Fig. 4, respectively. The  results in Fig. 5 show 
that  (i) "c i at  x = 0 increases with increasing ac for  any  
values o f  l and c, (ii) the length o f  the region where the 
fibre has been yielded in shear: namely  the region 
where T i ~ Tly (150 M P a  in this case), increases with 
increasing ac until this length approaches  l /2,  (iii) 
when l is short,  the length of  the region o f  z i > Zly 
approaches  l /2  at  low stress level and (iv) when the 
value o f  c is large, the length o f  the region of  zi > Zly 
approaches  l /2  at  low stress level. 

Figs 6 and 7 show a 2 - x  and i- i - - X  curves, respect- 
ively, for  l = 200#m,  E1 = 100GPa ,  E2 = 300GPa ,  
G, = 4 0 G P a ,  G2 = 120GPa ,  d = l m m ,  c = 10#m,  
co = 0.005, fl = 0.00313, and O ' l y  = 1 0 0 M P a  and 
zjy = 50 M P a  (curve 1) ,  aly = 2 0 0 M P a a n d z ~ y  = 

1 0 0 M P a  ( 2 ) ,  and O'ly = 3 0 0 M P a  and Zly = 
150 M P a  ( 3 ) at  (a) ar = 80, (b) 200, (c) 320 and  (d) 
440 MPa .  These examples  show the effects o f  the yield 
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Figure 6 Tensi le  s t ress  d i s t r i b u t i o n  in s e g m e n t s  as  a f u n c t i o n  o f  x for  

O-ly = I 0 0  ( @ ) ,  200 ( ~ ) )  a n d  300 M P a  ((~)) a t  c% = (a) 80, (b) 200,  

(c) 320 a n d  (d) 4 4 0 M P a .  E l = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  Gj = 

4 0 G P a ,  G 2 = 1 2 0 G P a ,  ~o = 0 .005,  fl = 0 .00313,  d =  I m m ,  

l = 2 0 0 # m  a n d  c = 1 0 # m .  

stress of  fibre on the stress distributions. At ar = 
80 MPa, the curves 1 to 3 correspond to stage (a) in 
Fig. 3, at ac --- 200MPa,  thecurves  1 ,  2 and 3 
correspond to stages (g), (e) and (a), respectively, and 
at 320 and 440 MPa,  they correspond to stage (g). Figs 
6 and 7 show the following features. 

1. At low stress level such as a~ = 80 MPa, the 
curves 1 to 3 are the same to each other, since at 
this stress level, neither tensile nor shear yielding of the 
fibre occur. 

2. For  any values of  O'ly , the 0" 2 and 1~ i at any x 
(except x = 0 for a2) increases with increasing a~. 

3. When the yield stress of  the fibre is low, the fibre 
yields in tension and shear at low stress levels. This 

' ( a )  ' ( b )  

10( 

~ o ~ 

~'- -5o 

-10C 

I I (c: (d) 

loo 

~ 50 
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I-, -5o 

- 101 
-15 ~ 

o ,60 200.0 ,;o 200 
x l p m )  x l p m )  

Figure 7 S h e a r  s t ress  d i s t r i b u t i o n  a t  the  in t e r face  as  a f u n c t i o n  o f  x 

for  aly = I00  ( @ ) ,  200 ( @ )  a n d  3 0 0 M P a  ( @ )  a t  a~ = (a) 80, (b) 

200,  (c) 320 a n d  (d) 4 4 0 M P a .  E] = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  GI = 

4 0 G P a ,  G 2 = 1 2 0 G P a ,  e~ = 0 .005,  fl = 0 .00313,  d = l m m ,  l = 
200 ,um a n d  c = 10,urn. 

raises the value of a2 even at low stress levels. For  
instance, at ac = 200 MPa where, for aly = 100 MPa, 
the fibre has been yielded in tension for 0 < x < l /2 

(i.e. in the whole region) and in shear for 
0 < x < 99#m, for a~y = 200MPa,  the fibre has 
been yielded in tension for 0 < x < 44/~m and in 
shear for 0 < x < 1/~m, and for Oqy = 300 MPa, the 
fibre deforms elastically both in tension and shear in 
the whole range of x, the maximum value of  a2 at 
x = l/2, a2 . . . . .  for aly = 100MPa ( 1 ) is higher than 
that for aly = 200 MPa ( 2 ) and a2 .. . .  for 200 MPa 
( 2 ) is higher than that for a~y = 300 MPa ( 3 ). 

4. When the yield stress of  the fibre is high, the a2 is 
low at low stress levels but it becomes high at high 
stress levels after yielding. Especially when ao is very 
high such as 440 MPa shown in (d), the height of  a2 is 
in the same sequence of  the largeness of  a b. 

5. After yielding of  the fibre in shear, % decreases 
relatively slowly with increasing x for 0 < x < b but 
then rapidly for b < x < l/2. b approaches l /2 at high 
stress levels for any values of  aly. 

6. zi at high stress level such as 440 MPa becomes 
high and the height of% for high a~y is higher than that 
for low aly. This difference in the height of  Ti results in 
the difference in tensile distribution in the segments as 
stated in 4, since the higher the value of  %, the more 
stress transfer can occur from the fibre to the 
segments. 

3.2. Max imum shear stress at the interface as 
a funct ion of the stress of the 
composi tes 

The shear stress Ti at the interface is highest at x = 0 
and l) as already shown in Figs 5 and 7. Figs 8 and 9 
show the variation of  ~i (x = 0) as a function of  ac, 
where the values of  E~ = 100GPa, E2 = 300GPa,  
G1 = 40GPa,  G2 = 120GPa, ~o = 0.005 and 7 = 
0.00313, and for Fig. 8 the values of  d = l mm, 
c = 10#m, a]y = 100MPa (a) and 300MPa (b) and 
l = 25, 50, 100 and 200/tm, and for Fig. 9 the values 
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Figure 8 V a r i a t i o n  o f z  i (x = 0) as  a f u n c t i o n  o f a  c fo r  o-jy = (a) 100 

a n d  (b) 300 M P a  fo r  I = 25 ((~)), 50 ( (~ ) ,  100 ((~)) a n d  2 0 0 m  ((~)). 

E1 = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  G 1 = 4 0 G P a ,  G 2 = 1 2 0 G P a ,  o~ = 

0.005,  fl = 0 .00313,  d = 1 m m  a n d  c = 1 0 # m .  
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Figure 9 V a r i a t i o n  o f  zi (x  = 0) as  a f u n c t i o n  o f  ac fo r  (a) 

c = 3 # m  a n d  (b) 10 # m  for  l = 25 ((~)), 50 ((~)), 100 ( 0 )  

a n d  2 0 0 # m  ((~)). E~ = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  

G 1 = 4 0 G P a ,  G 2 = 1 2 0 G P a ,  co = 0.005,  ~ = 0 .00313,  

ay = 300 M P a  a n d  d = 300/~m. 

of d =  300#m, c = 3#m (a) and 10#m (b), 
tr~y = 300MPa, and I = 25, 50, 100 and 200/~m, were 
used in the calculation. The following features are 
shown in Figs 8 and 9. 

(i) The longer is l, the higher is zi (x = 0). 
(ii) The larger is e, the higher is Ti (x = 0). 

(iii) zi (x = 0) increases linearly with increasing o-c 
in the initial portion but then very rapidly in the 
second portion and gradually in the final portion. The 
initial linear portion corresponds to stage (a), the 
second portion to (b) and (d) or (e), and the final 
portion to (g) in Fig. 3. Taking the examples shown 
in Fig. 8a and b, the curves 1 to 3 experience 
the stages (a) ~ (b) ~ (d) ~ (g)and the curve 4 the 
stages (a) ~ (b) ~ (e) ~ (g). In all examples inves- 
tigated, the range of  the second portion consisting of  
the stages (b) and (d) or (e) was very narrow. This 
result could be explained as follows. When tensile 
yielding of  the fibre at x = 0 occurs and stage (b) 
arises, the deformation amount  (strain) of  the fibre at 
x = 0 should be more than that in stage (a) to support  
the applied load. This increment in deformation 
amount  in the fibre causes large differences in 
deformation between the fibre and the segments, 
which rapidly raises the interfacial stress. In this way, 
the interfacial stress at x = 0 becomes Zly after a small 
load increment and stage (g) arises. In stage (g), zi 
(x = 0) increases gradually since the shear strain har- 
dening coefficient is normally low (fl = 0.00313 in this 
calculation). 

3.3. Maximum exerted tensile stress in 
segments as a function of stress of 
composites 

As shown in Figs 4 and 6, the segments are pulled in 
tension and the maximum exerted tensile stress in the 
segments is found at x = l/2. The maximum tensile 
stress in segments (7' 2 . . . .  becomes high with increasing 
~c. The variation of o-2.max as a function of o-c is 
influenced by the geometrical factors such as d, l and c, 
and also by the mechanical factors such as E~, E2, G~, 
(32, ~y,  Z~y and so on. In this section, some examples 
showing the effects of  these factors on o- 2 . . . .  -o-c curves 
will be presented. 

Figs 10 and 11 sfiow how the geometrical factors 
affect the o-2 . . . .  -~r~ curve. In these calculations, the 
values of  E~ = 100GPa, E2 = 300GPa,  Gt = 
40GPa,  G2 = 120GPa, ~o = 0.005, 7 = 0.00313, 
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o-,y = 300 MPa  and Zly = 150 MPa  were used and the 
values of  d, c and l were varied. Fig. 12 shows the 
effects of  the magnitude of o-ly in which the values 
concerned with mechanical properties other than o-ly 
and Tly were the same as those used in the calculation 
foi ~ Figs 10 and 11, and the values of  d and e were 
taken to be l m m  and 10#m, respectively. Fig. 13 
shows the effects of  the magnitude of E2 and G2 under 
fixed values of  E, = 100GPa, G~ = 40GPa,  o-ly = 
200MPa, T~y = 100MPa, co = 0.005, 7 = 0.00313, 
d = l m m ,  c = 10#m and l = 200pm. In this case, 
Gz was calculated using the relation 

G2 = E2/[2(1 + v2) ] (47) 

where v2 is Poisson's ratio of  the coated layer, which 
was taken to be 0.25 in this work. The effects of  the 
geometrical and mechanical factors on the (9"2 . . . .  -o-c 
curves shown in Figs 10 to 13 are summarized as 
follows. 

(i) In any case, o- 2 . . . .  increases with increasing o-c. 
(ii) In the initial portion corresponding to stage (a) 

in Fig. 3, (9 2 . . . .  increases linearly with increasing o-c and 
in the second port ion corresponding to stages (b) and 
(d) or (e), it increases rapidly. In the final port ion 
corresponding to stage (g), the o-2.m~ for large l 
increases more than that for small l. 
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Figure 10 V a r i a t i o n  o f o  2 . . . .  as  a f u n c t i o n  o f t r  c fo r  (a) d = 1 0 0 p m  

a n d  (b) d = 1 m m  fo r  l = 25 ((T)), 50 ((~)), 100 ((~)) a n d  2 0 0 # m  

((~)). E~ = 100 G P a ,  E 2 = 300 G P a ,  G1 = 40  G P a ,  G2 = 120 G P a ,  

= 0 .005,  7 = 0 .00313,  ~ly = 3 0 0 M P a  Zly = 1 5 0 M P a  a n d  e = 

3/~m. 
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Figure 13 V a r i a t i o n  o f  a 2 . . . .  as a f u n c t i o n  o f  e~ fo r  E 2 = 300 G P a  
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Figure 11 V a r i a t i o n  o f a  2 . . . .  as  a f u n c t i o n  o f a c  fo r  (a) c = 3/~m a n d  

(b) c = 1 0 # m ,  fo r  l = 25 ( (~ ) ,  50 ((~)), 100 ((~)) a n d  200/~m ( @ ) .  

E I = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  Gj = 4 0 G P a ,  G2 = 1 2 0 G P a ,  co = 

0.005,  fl = 0 .00313,  aly = 3 0 0 M P a ,  Tly = 1 5 0 M P a  a n d  d = 

300 #m. 

(iii) The longer the l, the higher the a2 .. . .  at any 
stress level of ac. 

(iv) The thicker the c for a given value of  d, the 
lower the r . . . .  at any stress level of  ac. 

(v) The larger the d for a given value of c, the 
higher the a2 .. . .  at any stress level of  o- c. 

(vi) As the second portion for low ely arises at low 
stress levels of o-~, o" 2 . . . .  for low Crly is higher than that 
for high ~ly since the stages (b) and (d) (or (e)), which 
raise Ti as stated in Section 3.2, occur at low stress 
levels of  crc for low O-~y, while they do not occur at the 
same stress levels for high O-~y (they occur at higher 
stress levels for higher ely). On the other hand, in the 
final portion, the o" 2 .... for large a~y is higher than that 
for low a~y since the Ti after occurrence of  stage (g) is 
high for high ~rly but low for low O-~y as stated in 
Section 3.2. 

a n d  E2 = 1 0 0 G P a  a n d  G2 = 4 0 G P a  ( @ ) .  E I = 1 0 0 G P a ,  G, = 

40 G P a ,  o~ = 0.005,/Y = 0 .00313,  aly = 200 M P a ,  Tly = 100 M P a ,  

d = l m m ,  c = 10/~m a n d  l = 2 0 0 p m .  

(vii) The higher the E 2 (and G2), the higher the ~2 . . . .  
in stage (a). However, in stage (g), the a2 .. . .  for high 
E2 is not so much different from that for low E2. 

In the present work, calculation was carried out for 
some combinations of  the geometrical and mechanical 
factors. For  other combinations, calculation can be 
carried out in a similar manner. 

In the present approach, we have employed the 
shear lag analysis in order to estimate the stress trans- 
fer from fibre to broken segments, ignoring the radial 
and tangental stresses in the fibre and the segments. 
This gives a limit of  application of  the present 
approach to practical specimens. However, as the 
multiple-fracture of coating film occurs mainly by the 
increase of  exerted stress on once-fractured coating 
film with increasing stress level, the stress transfer 
from the fibre segments is the most important process 
in multiple-fracture phenomenon. In this point, the 
present calculation method may be a useful tool to 
understand this phenomenon. 
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Figure 12 V a r i a t i o n  o f  a 2 . . . .  as a f u n c t i o n  o f  cr c fo r  (a) ~hy = 

1 0 0 M P a  a n d  % = 5 0 M P a ,  a n d  (b) ~rly = 3 0 0 M P a  a n d  % = 

1 5 0 M P a ,  fo r  1 = 25 ( @ ) ,  50 ((~)), 100 ( @ )  a n d  200/~m ((~)). 

E I = 1 0 0 G P a ,  E 2 = 3 0 0 G P a ,  G 1 = 4 0 G P a ,  G 2 = 1 2 0 G P a ,  m = 
0 .005 , /~  = 0 .00313,  d = l m m  a n d  e = 10#rn .  

4. Conclusions 
When a brittle film is coated onto the surface of  a 
metal fibre (wire or rod), the coating film shows 
multiple-fracture under loading. In order to describe 
tensile stress distribution in segmented coating film 
and shear stress distribution at the interface between 
the fibre and the segment, a new approximate cal- 
culation method was presented, assuming that the 
interfacial bonding strength is high enough to prevent 
debonding. Using the present calculation method, 
effects of  the geometrical factors such as fibre 
diameter, thickness of  the coated layer and the length 
of  segment as well as those of  mechanical factors such 
as Young's modulus, shear modulus and yield stress of  
fibre and coating film on the stress distributions were 
described quantitatively. 
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